Planning with State Models, MDPs and POMDPs

Hector Geffner
Universidad Simón Bolívar
Caracas, Venezuela
The Control Problem

\[\text{Goals} \rightarrow \text{Agent} \quad \text{actions} \quad \text{World} \quad \text{observations} \]

Examples:

- a controller that has to schedule jobs
- mobile robot that has to navigate in building
- a program to coordinate a logistics effort
-

Questions:

- how to design ‘agent’
- how to select the ‘right’ actions
Approaches to the control problem in AI

- **Programming**
 write control by hand in suitable procedural language (e.g., Brooks’ approach to mobile robots)

- **Planning**
 derive control from declarative description of actions (dynamics) and goals (e.g., Strips planning)

- **Learning**
 learn control from examples or trial and error (e.g., reinforcement learning, neural nets)

 - Successes and problems in each approach
 - We’ll focus on **planning** approach
Planning

deriving control from declarative description of actions (dynamics), sensors, and goals

• Open-loop Planning

\[\text{Actions} \rightarrow \text{Open-loop Planner} \rightarrow \text{Plan} \rightarrow \text{World} \]

• Closed-loop Planning

\[\text{Actions} \rightarrow \text{Closed-Loop Planner} \rightarrow \text{Plan}^* \rightarrow \text{World} \]

Planning with State Models, MDPs and POMDPs; H. Geffner; 2000
Example: Simplified robot navigation

Init: X_0, Y_0
Goal: X_G, Y_G
Actions: $Up, Down, Left, Right$
Sensor: Current X, Y

- **Open-loop plan** U, U, R, R may solve problem but makes no use of sensor information
- **Closed-loop plan** more robust if actions don’t work 100% as expected

 - Up if $Y < Y_G$
 - $Down$ if $Y > Y_G$
 - $Right$ if $X < X_G$
 - $Left$ if $X > X_G$

- More interesting situations arise from presence of obstacles, stairs, initial uncertainty, unreliable sensors, ...
Example: Contingent Planning

- **Init**: two empty bowls and a large pile of eggs
- **Goal**: have three good eggs and no bad ones into bowl2
- **Actions**: break egg into bowl, clean bowl, pour one bowl into another, inspect bowl, ...

Solution: closed-loop plan such as

```
grab and break egg into bowl1
inspect bowl1
if bad, clean bowl1
else pour bowl1 into bowl2  *
repeat until * done 3 times
```
General approach to planning

- **Mathematical Models** for making tasks precise
- **Representation Languages** for describing problems
- **Algorithms** for solving them

Models we will consider are:

- State Models

 determinism, complete information

- Markov Decision Processes (MDPs)

 non-determinism, full sensing

- Partially Observable MDPs (POMDPs)

 non-determinism, partial sensing
Illustration: Omelette Problem

Action:

<table>
<thead>
<tr>
<th>Action</th>
<th>Precond</th>
<th>Effects</th>
</tr>
</thead>
</table>
| grab-egg() | \(-\text{holding}\) | \(\text{holding} := \text{true}\)
\(\text{good?} := (\text{true} \ 0.5 ; \text{false} \ 0.5)\) |
| break-egg(bowl : \textit{BOWL}) | \(\text{holding} \wedge (\text{ngood(bowl)} + \text{nbad(bowl)}) < 4\) | \(\text{holding} := \text{false}\)
\(\text{good?} \rightarrow \text{ngood(bowl)} := \text{ngood(bowl)} + 1\)
\(\text{ngood(bowl)} := 0\)
\(\text{nbad(bowl)} := \text{nbad(bowl)} + 1\)
\(\text{nbad(bowl)} := 0\) |
| clean(bowl:BOWL) | \(-\text{holding}\) | \(\text{ngood(bowl)} := 0\)
\(\text{nbad(bowl)} := 0\) |
| inspect(bowl : \textit{BOWL}) | | \(\text{obs(}\text{nbad(bowl)} > 0)\) |

Performance of controller obtained
Outline for rest of the talk

- Models
- Algorithms
- Languages
- Results
State Models

- State models are familiar in AI
- They are characterized by
 - finite and discrete state space \(S \)
 - an initial state \(s_0 \in S \)
 - a set \(G \subseteq S \) of goal states
 - actions \(A(s) \subseteq A \) applicable in each state \(s \in S \)
 - a transition function \(f(s, a) \) for \(s \in S \) and \(a \in A(s) \)
 - action costs \(c(a, s) > 0 \)
- A solution is a sequence of applicable actions that leads to goal
- A solution is optimal if it has minimum cost
Markov Decision Processes (MDPs)

- MDPs are ‘small’ departure from State models
- Action effects are **stochastic** and **fully observable**:
 - a state space S
 - a set $G \subseteq S$ of goal states
 - actions $A(s) \subseteq A$ applicable in each state $s \in S$
 - transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
 - action costs $c(a, s) > 0$

- **Solutions** are **functions (policies)** mapping states into actions

- **Optimal** solutions have minimum expected costs
 (Puterman, Bertsekas, Sutton & Barto, . . .)

- Other MDP formulations: discounted, finite-horizon, . . .
Partially Observable MDPs (POMDPs)

- POMDPs generalize State Models and MDPs
- Action effects are **stochastic** and **partially observable**:
 - states $s \in S$
 - actions $A(s) \subseteq A$
 - costs $c(a, s) > 0$
 - transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
 - **initial belief state** b_0
 - **final belief states** b_F
 - **observations** o after action a with probabilities $P_a(o|s)$

- **Solutions** are policies that map belief states into actions (Sondik, Littman, Kaelbling, Cassandra, ...)
- **Optimal** policies minimize expected cost to go from b_0 to b_F
Beliefs in POMDPs

- Beliefs b are **probability distributions** over S
- Actions $A(b)$ applicable in belief state b are
 \[A(b) = \{ a \mid a \in A(s) \text{ if } b(s) \neq 0 \} \]
- An action $a \in A(b)$ **deterministically** maps b into b_a
 \[b_a(s) = \sum_{s' \in S} P_a(s|s') b(s') \]
- In the **absence of feedback**, a POMDP is a **deterministic search problem** in belief space
- The task is to find a sequence of applicable actions that maps b_0 into target belief
- In the **presence of feedback** things are different . . .
Beliefs in POMDPs (cont.)

- In the presence of feedback, beliefs are influenced by observations which cannot be predicted.
- As a result, evolution of beliefs cannot be predicted either.
- ... yet probability of observing o after doing a in b is
 \[b_a(o) = \sum_{s \in S} P_a(o|s)b_a(s) \]
- ... and new belief after observing o is
 \[b_a^o(s) = P_a(o|s)b_a(s)/b_a(o) \]
- That is, action a maps belief b into belief b_a^o with probability $b_a(o)$.
- A POMDP becomes an MDP over belief space (Astrom 1965)
Beliefs in Non-deterministic POMDPs

- When probabilities are **uniform** or actions and sensing is **non-deterministic**, belief states can be represented by **sets** of states.

- The equations for the successor belief states \(b_a \) and \(b_a^o \) become simpler.

 e.g., if non-deterministic transition function \(F(a, s) \) maps a state into a **set** of states, the equation for \(b_a \) becomes

 \[
 b_a = \{ s' \mid s' \in F(a, s) \text{ and } s \in b \}
 \]

- **Model checking** techniques can be used for **representing** and **updating** beliefs efficiently.

- For full POMDPs, modal checking techniques not common yet; yet see (Boutilier *et al.* UAI 99)
Examples: Robot Navigation as a POMDP
(Kaelbling et al)

- **states**: $[x, y; \theta]$
- **actions** rotate +90 and −90, move
- **costs**: uniform except when hitting walls
- **transitions**: e.g., $P_{move}([2, 3; 90] | [2, 2; 90]) = .7$, if $[2, 3]$ is empty, ...
- **initial b_0**: e.g., uniform over set of states
- **final b_F**: certain to have reached goal
- **observations**: presence or absence of wall with probabilities that depend on position of robot, walls, etc
Example: Sorting as a POMDP
(Bonet & Geffner, ICML’98)

- **Task:** Sort a vector of numbers of fixed size n
- **Actions:** $\text{CMP}(i,j)$ and $\text{SWAP}(i,j), 1 \leq i < j \leq n$
- **States:** the $n!$ vectors
- **Initial belief state** b_0 uniform over all states
- **Final belief state** b_F for which $b_F(s_G) = 1$, where $s_G[i] = i, i = 1, \ldots, n$, is the ‘sorted’ state
- **Observations** $i < j$ ($j < i$) result from $\text{CMP}(i,j)$ when $s[i] < s[j]$ ($s[i] > s[j]$)

A solution to the problem becomes a policy of **swaps** and **comparisons** that would take us from b_0 to b_F.
Road Map

- Models
 - Algorithms
 - Languages

State Models, MDPs and POMDPs

models are great, yet

How to solve them? \rightarrow **algorithms**

How to build them? \rightarrow **language**
Algorithms

1. **Heuristic search** algorithms
 - for solving State Models

2. **Dynamic programming** methods
 - for solving State Models and MDPs

3. Combinations and extensions of 1 + 2:
 - **Real Time Dynamic Programming** Methods
 - **Reinforcement Learning** Methods

4. We’ll focus on a few methods; those that appear simpler and most effective
Heuristic Search: Greedy Algorithm

- **Greedy search** is a simple search algorithm

1. **Evaluate** each action a applicable in s

$$Q(a, s) = c(a, s) + h(s_a)$$

where s_a is next state

2. **Apply** action a that minimizes $Q(a, s)$

3. **Exit** if s_a is goal, else go to 1 with $s := s_a$

- **Greedy Policy** is closed-loop version; in each state s it selects the action $\pi_h(s)$:

$$\pi_h(s) = \arg\min_{a \in A(s)} Q(a, s)$$

- Greedy policy is **optimal** when $h = h^*$; otherwise non-optimal and may even get trapped into loops
How to get h^*: Dynamic Programming

- Optimal value function h^* is solution of Bellman equation

$$h^*(s) = \min_{a \in A(s)} [c(a, s) + h^*(s_a)]$$

- For MDPs, equation becomes

$$h^*(s) = \min_{a \in A(s)} [c(s, a) + \sum_{s' \in S} P_a(s'|s)h^*(s')]$$

- Bellman equation can be solved by value iteration method where estimates V of h^* are updated until convergence as

$$V(s) := \min_{a \in A(s)} [c(s, a) + \sum_{s' \in S} P_a(s'|s)V(s')]$$

- Yet more recent method that integrates updates with a greedy search tends to scale up better . . .
Real Time Dynamic Programming (Barto et al 95)

- RTDP combines greedy search with DP updates

1. **Evaluate** each action \(a \) applicable in \(s \) as
 \[
 Q(a, s) = c(a, s) + \sum_{s' \in S} P_a(s'|s)V_i(s')
 \]

2. **Apply** action \(a \) that minimizes \(Q(a, s) \)
3. **Update** \(V(s) \) to \(Q(a, s) \)
4. **Observe** resulting state \(s' \)
5. **Exit** if \(s' \) is goal, else go to 1 with \(s := s' \)

- \(V(s) \) initialized to \(h(s) \)
- if \(h \) is admissible, **after repeated trials**, greedy policy eventually becomes **optimal**
- if \(h \) is good, very large problems can be solved
RTDP for POMDPs (Bonet and Geffner 98)

Given that POMDPs are MDPs over belief states, algorithm for POMDPs becomes

1. **Evaluate** each action a applicable in b as

 $$Q(a, b) = c(a, b) + \sum_{o \in O} b_a(o)V(b^o_a)$$

2. **Apply** action a that minimizes $Q(a, b)$
3. **Update** $V(b)$ to $Q(a, b)$
4. **Observe** o
5. **Compute** new belief state b^o_a
6. **Exit** if b^o_a is a final belief state, else set b to b^o_a and go to 1

- Algorithm can easily be applied to non-deterministic POMDPs
- In probabilistic case, beliefs are discretized and asymptotic optimality not guaranteed
Road Map

- **Models**: State Models, MDPs, MDPs
- **Algorithms**: RTDP + variations
- **Languages**: . . .
- **Results**: . . .
Languages: High-Level Planning and Control

- Language of MDPs and POMDPs often not suitable for modeling
- **Logical** languages can be used to specify MDPs and POMDPs in a compact and modular way
- Strips and ADL are examples; yet more expressive languages needed for modeling **sensors** and **probabilities**
- We’ll illustrate the language we have developed through examples
- A tool that we call **GPT** accepts problems expressed in this language, compiles them into MDPs/POMDPs, and computes resulting controller
Example: Omelette Problem (Levesque)

- Representation (incomplete):

 Action:
 Precond:
 Effects:

- Performance resulting controller (2000 trials in 192 sec)
Example: Information Gathering (Thrun)

- initial position is 6
- goal and penalty at either 0 or 4; which one not known
- noisy map at position 9

- Representation (incomplete)

 Action: go-up(); same for down,left,right
 Precond: FREE(up(pos))
 Effects: pos := up(pos)

 Action: *
 Effects: pos = pos9 \rightarrow obs(ptr)
 pos = goal \rightarrow obs(goal)
 Costs: pos = penalty \rightarrow 50.0

 Ramif: true \rightarrow ptr = (goal p ; penalty 1 - p)

 Init: pos = pos6 ; goal = pos0 \lor goal = pos4
 penalty = pos0 \lor penalty = pos4 ; goal \neq penalty

 Goal: pos = goal

- Controller performance (60 trials/second)
Example: Key and Boxes (Collins and Pryor)

- Representation (incomplete)

Action: \texttt{go-out()}
Precond: \texttt{position \neq outside \land in(key, contents(atDoor))}
Effects: \texttt{position := outside}

Action: \texttt{go-in(p)(loc : LOC)}
Precond: \texttt{position = outside, \ loc \neq outside \land \ldots}
Effects: \texttt{position := loc}

Action: \texttt{pickup(loc : LOC)} similar for putdown
Precond: \texttt{position = loc, \ holding = nothing}
Effects: \texttt{holding := pick(contents(loc)), obs(holding = nothing)}
\texttt{contents(loc) := remove(holding*, contents(loc))}

Ramif: \texttt{items(loc) = count(contents(loc))}
Init: \texttt{contents(table) := empty; contents(atDoor) := \ldots}
Goal: \texttt{number_red(contents(outside)) > 0}

- Performance of resulting controller (60 trials/5.61 seconds)
Summary

- A general **approach** to planning based on
 1. high-level action **languages**
 2. various state **models** (MDPs, POMDPs, ...)
 3. **algorithms** that combine ideas from heuristic search and dynamic programming

- Promising **results** over a number of tasks
 contingent planning, navigation, sorting, decision tree induction, ...

- A number of **challenges**
 - better lower bounds
 - scaling up
 - learning generalizations
 - optimality bounds
 - integration with other techniques (e.g., BDDs)
 - ...
To learn more

- Recent books by Sutton and Barto, and Bertsekas and Tsitsiklis, on MDPs and reinforcement learning

- Articles on Real Time Search by Korf, and on RTDP by Barto, Bradtke & Singh, both in AI Journal

- Articles by various authors: Kaelbling, Russell, Littman, Boutilier, Koenig, and others

- Papers and software at www.1dc.usb.ve/~hector