Heuristic Search Planning:
Overview and Prospects

Hector Geffner
Universidad Simón Bolívar
Caracas, Venezuela
9/2000
Motivation

- Development of **General Problem Solvers** has been a main goal in Artificial Intelligence

![Diagram: Problem → Language + Algorithms → Solution]

- Ideally one would describe problem at high-level, and computer would take care of the rest

- Example problems

 - 8-puzzle
 - rubik
 - mastermind
 - 12 coins
 - diagnosis
 - scheduling
 - tsp
 - robot navig
 - sorting
 - minesweeper
 - crypto-arith
 - vehicle routing
 - ...
 - ...

Planning; H. Geffner; 2000
Framework

how to make sense of this variety of problems?

Three distinguished components:

- **Representation languages** for describing problems conveniently
- **Mathematical models** for making sense of classes of problems
- **Algorithms** for solving these models
Mathematical Models: State Models

State models are very common in AI and determined by

- finite and discrete state space S
- an initial state $s_0 \in S$
- a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- a transition function $f(a, s)$ for $s \in S$ and $a \in A(s)$
- action costs $c(a, s) > 0$

- A solution for this model is a sequence of applicable actions that maps the initial state s_0 into a goal state $s \in S_G$
- Problems like TSP, Sliding puzzles, and Rubik’s cube can be naturally modeled and solved as state models
- Problems like Mastermind, Robot Navigation, Scheduling, and others do not
Some Mathematical Models in Planning

- State Models (SMs)
 - simplest type of models
- Non Deterministic and Probabilistic State Models
 - more complex dynamics
- Partially Observable Non-Det and Prob State Models
 - more complex sensing (feedback)
- Scheduling/Temporal Models
 - time, action durations, concurrency, resources
Focus in this talk: Classical Planning

- **Classical planning** deals with representation and solution of problems that can be formulated as **State Models**

- **Main ingredients** are
 - **languages** for representing State Models compactly (e.g., Strips, ADL, . . .)
 - **algorithms** for solving State Models that exploit the compact representations
The Strips Language (Fikes and Nilsson 71)

- **Strips** is one of the oldest, simplest, and most used planning languages, even if **not too flexible**

- A **problem** in Strips is a tuple $\langle A, O, I, G \rangle$ where
 - A stands for set of all **atoms** (boolean vars)
 - O stands for set of all **operators** (ground actions)
 - $I \subseteq A$ stands for **initial situation**
 - $G \subseteq A$ stands for **goal situation**

- Operators $o \in O$ **represented** by three lists
 - the **Add** list $Add(o) \subseteq A$
 - the **Delete** list $Del(o) \subseteq A$
 - the **Precondition** list $Pre(o) \subseteq A$

- Intuitively, $Pre(o)$ encodes the atoms that must be true for o to be applicable, $Add(o)$ encodes the atoms that o makes true, and $Del(o)$ encodes the atoms that o makes false
Semantics of Strips: From Strips to State Models

Strips problem \(P = \langle A, O, I, G \rangle \) determines state model \(S(P) \)

- the states \(s \in S \) are collections of atoms
- the initial state \(s_0 \) is \(I \)
- the goal states \(s \in S_G \) are such that \(G \subseteq s \)
- the actions in \(s \) are the \(op \in O \) s.t. \(Prec(op) \subseteq s \)
- the state that results from doing \(op \) in \(s \) is \(s' = s - Del(op) + Add(op) \)
- action costs \(c(op, s) \) are all 1

The (optimal) solution of planning problem \(P \) is the (optimal) solution of State Model \(S(P) \)
Algorithms for Solving State Models

Planning problems P could be solved by standard **search algorithms** over state space $S(P)$, yet this approach not pursued successfully until recently . . .

- **Blind search/Brute force algorithms**
 - Goal plays **passive** role in the search
 - e.g., *Depth First Search (DFS)*, *Breadth-first search (BrFS)*, *Uniform Cost (Dijkstra)*, *Iterative Deepening (ID)*

- **Informed/Heuristic Search Algorithms**
 - Search uses a function $h(s)$ that estimates ‘distance’ (cost) from state s to S_G to guide search
 - e.g., *A* *, IDA* *, Hill Climbing*, *Best First Search (BFS)*, *Branch & Bound*

Approaches to Domain-Independent Planning

- **Strips algorithm** (70’s): Total ordering planning backward from Goal; work always on **top** subgoal in stack, delay rest

- **Partial Order (POCL) Planning** (80’s): work on **any** subgoal, resolve threats; UCPOP 1992

- **Graphplan** (1995 – …): build graph containing all possible **parallel** plans up to certain length; then extract plan by searching the graph backward from Goal

- **SatPlan** (1996 – …): map planning problem given horizon into SAT problem; use state-of-the-art SAT solver

- **Heuristic Search Planning** (1997 – …): search state space $S(P)$ with heuristic function h extracted from problem P

- **Model Checking Planning** (1998 – …): search state space $S(P)$ with ‘symbolic’ Breadth First Search where sets of states represented by formulas implemented by BDDs
Key ingredients in Heuristic Search Planning

- **State Space**
 - progression space (forward planning)
 - regression space (backward planning)

- **Search Algorithms**
 - Hill-Climbing, A*, Weighted A*, IDA*, . . .

- **Heuristics**
 - extracted automatically from representation; it’s the most **critical** component in heuristic search planning and what distinguishes it from specialized problem solving.
Some Heuristic Search Planners

1. UNPOP (McDermott)
2. HSP (Bonet & Geffner)
3. GRT (Refanidis & Vlahavas)
4. FF (Hoffman)
5. MIPS (Edelkamp; also uses other techniques)
6. STAN (Fox & Lang; also uses other techniques)

Planners 2–6 entered AIPS-2000 Planning Contest where they were the top 5 performers (among approx. 13 planners)

Top performing planner was FF (Fast Forward)
Heuristic Functions

• Derived as **optimal** cost function of **relaxed problem**
 e.g., Manhattan distance heuristic is optimal function of puzzle in which tiles are allowed to move into **any** neighboring position

• In planning, simple relaxation can be obtained by **ignoring** **Delete Lists**

• Resulting heuristic is informative and admissible . . . but is still **intractable**
Additive Heuristic Function

- Heuristic used in UNPOP and HSP makes further assumption that **subgoals are independent**
- As a result, the cost of **sets** of atoms (subgoals) is given by **sum** of the costs of each of atom in the set

- For all **atoms** \(p \):
 \[
g(p; s) \overset{\text{def}}{=} \begin{cases}
0 & \text{if } p \in s \\
\min_{a \in O(p)} [1 + g(\text{Prec}(a); s)] & \text{otherwise}
\end{cases}
\]

- For **sets** of atoms \(C \):

 \[
g(C; s) \overset{\text{def}}{=} \sum_{r \in C} g(r; s)
\]

- Resulting heuristic \(h_{add} \)

 \[
h_{add}(s) \overset{\text{def}}{=} g(\text{Goals}; s)
\]

is **informative** but is **not admissible** . . .
Admissible Max heuristic h_{max}

Assumes that cost of sets of atoms (subgoals) is given by cost of most costly atom in set

- For all atoms p:
 \[
 g(p; s) \overset{\text{def}}{=} \begin{cases}
 0 & \text{if } p \in s \\
 \min_{a \in O(p)} [1 + g(Prec(a); s)] & \text{otherwise}
 \end{cases}
 \]

- For sets of atoms C:
 \[
 g(C; s) \overset{\text{def}}{=} \max_{r \in C} g(r; s)
 \]

- Resulting heuristic
 \[
 h_{\text{max}}(s) \overset{\text{def}}{=} g(\text{Goals}; s)
 \]

is admissible but not very informative \ldots
Heuristic underlying Graphplan

Graphplan can be understood as an Heuristic Search Planner

- **State space:** regression space
- **Search Algorithm:** version of IDA*
- **Heuristic Function** $h_G(s)$:

 given by index of first layer in plan graph that contains the atoms in s without a mutex

- Graphplan heuristic h_G closely related to h_{max}

 $h_{max}(s) \approx h_G(s) - \text{mutexes}$

 i.e., h_G becomes h_{max} when mutex info ignored

- h_G **admissible** for both sequential and parallel planning, and **dominates** h_{max} (more informative)
New family of heuristics h^m

- New class of **admissible** and **polynomial** heuristics h^m, $m = 1, 2, \ldots$ for sequential and parallel planning that generalize ‘max’ and Graphplan heuristics (Haslum & Geffner, AIPS’00)
 - For $m = 1$, sequential $h^m = h_{\text{max}}$
 - For $m = 2$, parallel $h^m = h_G$

- **Idea:** Heuristic $h^m(C)$ approximates cost of set of atoms C by cost of most costly subset $D \subseteq C$, $|D| = m$

- For higher m, h^m more **accurate** but more **expensive**
Formulation of heuristics h^m

- **Optimal** h^* that estimates cost of achieving set of atoms C from s_0 is

\[
 h^*(C) = \begin{cases}
 0 & \text{if } C \subseteq s_0 \\
 \min_{\langle B, a \rangle \in R(C)} [\text{cost}(a) + h^*(B)] & \text{otherwise}
\end{cases}
\]

where $\langle B, a \rangle \in R(C)$ if C regressed through a yields B

- **Heuristic** h^m that provides admissible estimate defined by relaxation:

\[
 h^m(C) \overset{\text{def}}{=} \begin{cases}
 0 & \text{if } C \subseteq s_0 \\
 \min_{\langle B, a \rangle \in R(C)} [\text{cost}(a) + h^*(B)] & \text{if } |C| \leq m \\
 \max_{D \subset C, |D|=m} h^m(D) & \text{otherwise}
\end{cases}
\]

- **Relaxation** approximates cost of large sets C, $|C| > m$, by cost of most costly subset $D \subset C$, $|D| \leq m$

- **Heuristics** h^m admissible and polynomial, and can be obtained from these equations by shortest-path algorithms
Special case 1: Max-Atom Heuristic h^1

For $m = 1$, the general equation defining h^m

$$h^m(C) \overset{\text{def}}{=} \begin{cases} 0 & \text{if } C \subseteq s_0 \\ \min_{\langle B, a \rangle \in R(C)}[\text{cost}(a) + h^*(B)] & \text{if } |C| \leq m \\ \max_{D \subseteq C, |D| = m} h^m(D) & \text{otherwise} \end{cases}$$

becomes

$$h^m(C) = \begin{cases} 0 & \text{if } C \subseteq s_0 \\ \min_{a \in O(p)}[\text{cost}(a) + h^m(\text{Prec}(a))] & \text{if } C = \{p\} \\ \max_{p \in C} h^m(\{p\}) & \text{otherwise} \end{cases}$$

This is exactly the equation for h_{\max}

($O(p)$ stands for the set of ops that add p)
Special case 2: Max-Pair Heuristic h^2

For $m = 2$, the equation defining $h^m(C')$ becomes

$$0 \quad \text{if } C' \subseteq s_0$$

$$\min_{a \in O(p)} \{c(a) + h^m(Prec(a))\} \quad \text{if } C' = \{p\}$$

$$\min \{\min_{a \in O(p \& q)} \{c(a) + h^m(Prec(a))\},$$

$$\min_{a \in O(p \mid q)} \{c(a) + h^m(Prec(a) \cup \{q\})\}, \text{ if } C' = \{p, q\};$$

$$\min_{a \in O(q \mid p)} \{c(a) + h^m(Prec(a) \cup \{p\})\}\}$$

$$\max_{\{p,q\} \in C} h^m(\{p, q\}) \quad \text{if } |C'| > 2$$

- Max-Pair Heuristic h^2 is equivalent to Graphplan’s h_G
 provided action costs are equal and all actions are mutex
 (no parallelism)
- Formulation makes clear distinction between definition of
 the heuristic and representations and procedures used
 for computing it
Some results over sequential domains

HSPr\(^*\): **optimal** sequential planner = IDA\(^*\) search + \(h^2\)

<table>
<thead>
<tr>
<th>Instance</th>
<th>STAN</th>
<th>BBOX</th>
<th>HSPr(^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>blocks-9</td>
<td>0.4</td>
<td>1.0</td>
<td>0.45</td>
</tr>
<tr>
<td>blocks-11</td>
<td>2.0</td>
<td>6.9</td>
<td>1.29</td>
</tr>
<tr>
<td>blocks-15</td>
<td>102.7</td>
<td>—</td>
<td>136.46</td>
</tr>
<tr>
<td>eight-1</td>
<td>89.9</td>
<td>—</td>
<td>63.53</td>
</tr>
<tr>
<td>eight-2</td>
<td>62.0</td>
<td>—</td>
<td>67.23</td>
</tr>
<tr>
<td>eight-3</td>
<td>0.5</td>
<td>89.0</td>
<td>0.51</td>
</tr>
<tr>
<td>grid-1</td>
<td>1.5</td>
<td>14.2</td>
<td>8.44</td>
</tr>
<tr>
<td>grid-2</td>
<td>—</td>
<td>—</td>
<td>7:55h</td>
</tr>
<tr>
<td>gripper-1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.07</td>
</tr>
<tr>
<td>gripper-2</td>
<td>0.0</td>
<td>0.3</td>
<td>0.11</td>
</tr>
<tr>
<td>gripper-4</td>
<td>2.1</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

- '—' memory exhausted
- '*' time exhausted (> 12 hours)
What about parallel domains?

- HSPr* does not solve hard instances of domains like rockets and logistics that are solved by GRAPHPLAN or SAT planners.

- Reason is that \(h^2 \) is poor estimator of sequential length in those domains.

- Still, heuristics \(h^m \) can be reformulated to estimate parallel rather than serial cost, and used to guide search for parallel optimal plans.

- The equation for parallel \(h^m \) for \(m = 2 \) just changes \(\min \) expression in \(h^m(C') \) for \(C = \{ p, q \} \) to

\[
h^m_p(C') = \min \left\{ \ldots, \min_{\langle a, a' \rangle \in O(p, q)} \left[1 + h^2_p(Prec(a) \cup Prec(a')) \right] \right\}
\]

- This additional clause allows \(p \) and \(q \) to be established by two actions in parallel at the cost of single action.

- Resulting heuristic is equivalent to Graphplan’s
Optimal parallel planner HSPr^*

<table>
<thead>
<tr>
<th>Problem</th>
<th>HSPr^*</th>
<th>GRAPHPLAN</th>
<th>STAN</th>
<th>BBOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>rocket.a</td>
<td>90.5</td>
<td>100.0</td>
<td>—</td>
<td>1.8</td>
</tr>
<tr>
<td>rocket.b</td>
<td>68.6</td>
<td>310.0</td>
<td>—</td>
<td>2.3</td>
</tr>
<tr>
<td>log.a</td>
<td>11540</td>
<td>1235</td>
<td>0.4</td>
<td>2.1</td>
</tr>
<tr>
<td>log.b</td>
<td>*</td>
<td>579</td>
<td>2.0</td>
<td>10.4</td>
</tr>
<tr>
<td>log.c</td>
<td>*</td>
<td>—</td>
<td>1261</td>
<td>47.0</td>
</tr>
</tbody>
</table>

+ Problems that could not be solved sequentially are solved in parallel

− Parallel HSPr^* comparable to Graphplan over rockets, but over order of magnitude slower in logistics

− Neither one competitive in these domains: problem is branching scheme; branching factor in parallel/temporal planning is too high
Branching in Search and Problem Solving

- 15-puzzle, Rubik, ...:
 - **Branching:** Forward/Backward ok

- TSP (Travelling Salesman Problem)
 - **Branching:** include/exclude edge $i-j$ in tour
 - **Termination:** when relaxed ‘assignment problem’ yields single tour

- JSP (Job Shop Scheduling)
 - **Branching:** $i < j$, $j < i$ for pairs of tasks
 - **Termination:** when no overlap among actions requiring same resource
Branching in Planning

- **Forward**: State-space; extend plan head; totally ordered
- **Backward**: Regression-space; extend plan tail; totally ordered
- **Temporal**: for action a and time i, create splits
 \[a[i] = \text{true} / a[i] = \text{false} \]
- **POCL**: Partial Order Causal Link Planning
 - precedence constrains $a_1 \prec a_2$ (promotion/demotion)
 to elim 'threats'
 - causal links $a_1 \rightarrow_P a_2$ to 'support' preconds
 - **termination**: when no threats & all preconds supported
 -
Future: Alternative Branching in Heuristic Search Planning

- **Idea:** Construct plans neither from **head** or **tail**, but by making partial **commitments**
- A ‘state’ (**partial plan**) σ is a **set** of commitments
- $h^*(\sigma)$ measures (parallel) cost of best **complete plan** compatible with **partial plan** σ
- Definition of heuristics h^m can be transformed to provide informative lower bounds on $h^*(\sigma)$
- Good systems for **optimal parallel** and **temporal** planning will most likely rely on good **lower bounds** and suitable **branching schemes**
- Most planners can be understood along these two dimensions . . .
- Stay tuned . . .
Summary

- Planning as **general problem solving**
- Focus on **Heuristic Search Planning**
- **Heuristics** is key notion; **Branching** is key as well
- **Challenges**
 - richer action models (uncertainty, feedback)
 - richer temporal model (durations, parallelism)
 - better performance (heuristics, branching, . . .)
- Important to keep certain **distinctions** in mind
 - optimal vs. suboptimal
 - sequential vs. parallel