Managing Schedule Evolution
Through Minimal Schedule Perturbation
An Airlines Perspective

Hani El Sakkout.

http://planet.dfki.de
Overview

- Background: Parc Technologies & IC-Parc
- Motivation
- Schedule Evolution in Airlines
- Parc Retimer
 - Model
 - Evolution Criterion
 - Algorithm
- Results
Goal:

To research, develop & deliver tools for strategic planning & resource control

- Research Arm (Imperial College)
 - Problem Research
 - The ECLiPSe Platform

- Commercial Arm
 - Sectors
 - Logistics • Airlines • Networking
 - Ownership
 - Venture Capital: 3i & other
 - Imperial College
 - IC-Parc & Parc Technologies Staff
Motivation: (I) Problem Uncertainty

- Schedule Uncertainty
 - Uncertain Activities
 - Variable demand for activities
 - E.g. Passenger demand in transport
 - Uncertain Resources
 - Variable supply of resource
 - E.g. Breakdowns of machines
 - Uncertain Constraints
 - Changing time factors
 - Deadlines
 - Delays
Motivation: (II) Problem Refinement

- Refining the Problem Definition
- WHAT-IF Analysis
 - IF we add/remove activities, WHAT is the impact on the schedule?
 - IF we add/remove resources, WHAT is the impact on the schedule?
 - IF we shorten/lengthen activities/setup-times/etc., WHAT is the impact on the schedule?
 -
Motivation - The Business Problem

- Problem Uncertainty + Problem Refinement = Changing Problem
- OBJECTIVE: Evolve Schedule To
 - SATISFY Changed Constraints
 - MINIMISE Perturbation
 - Avoid costs of plan changes
 - Avoid organizational confusion
 - OBSERVE Optimization Criteria
 - Maximise revenue
 - Minimise makespan
 - ...

Schedule Evolution in Airlines

Next Season’s Schedule

- Marketing Dept.
- Air Ops Dept.
- Cargo Ops Dept.
- Crew Ops Dept.
• IC-Parc
 – 3 Years Research into
 Dynamic Scheduling for AIRLINES

• Parc Technologies
 – Productization of the “Parc ReTimer” Suite:
 A Suite of Schedule Evolution Tools for AIRLINES
Time to Schedule

Uncertainty

Constrainedness

3 years
2 years
1 year
6 months
0

Parc ReTimer 3
Parc ReTimer 2
Parc ReTimer 1
Objectives

- Served a 767 in first month
- Delivered to first airline

Status

- greater "buffer times"
- fewer expensive "slots"

Business Applications

- Minimizing changes to existing schedule
- Observing constraints
- Retime scheduled fights
- Objective 1

- Aircraft Utilization
 1.
- Slots
 2.
- Punctuality
 3.
- Business Applications
 •
Parc ReTimer 1 for Aircraft Utilisation

• Inputs
 – an existing schedule
 – description of tolerable changes to the schedule
 – constraints
 • runway slots
 • curfews
 • daily and shuttle flights (a fixed time apart)
 • ...

• Output
 – A new schedule that
 • needs fewer aircraft
 • minimizes changes
 • satisfies constraints
Aircraft Utilisation ~ Fixed Times

No. of Resources Required

Time

S1 ——— E1
S2 ——— E2
S3 ——— E3

S3
S1
S2

3
2
1

3
2
1
Aircraft Utilisation ~ Variable Times

![Diagram showing aircraft utilisation with variable times]

- **No. of Resources Required**
 - S3: 1
 - S1: 2
 - S2: 3

Time Intervals
- S1
- S2
- E1
- E2
- E3
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>0</td>
<td>0.3</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.7</td>
<td>0.5</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>0</td>
<td>0.7</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.2</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.2</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>0</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.2</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>0</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.2</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Saturday</td>
<td>0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Sunday</td>
<td>0</td>
<td>0.7</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>
The Research Problem

• A Minimal Perturbation Problem
 – A CSP (V,D,C)
 – A solution to the CSP α
 – Sets of constraint additions & deletions $C_{\text{add}} \ C_{\text{del}}$
 – A perturbation function $\delta(\alpha, \beta)$

• An optimal solution β is such that
 – the new CSP $(V, D, (C \setminus C_{\text{del}}) \cup C_{\text{add}})$ is satisfied by β
 – $\delta(\alpha, \beta)$ is minimal
Solution Strategy

- a model that can capture many scheduling problems
- a suitable evolution criterion
- a generic scheduling algorithm for optimising this criterion
The Model

• Resource Feasibility Problem
 – [El-Kholy & Richards, ECAI96]

• Simple RFP
 – A set A of activities and a resource bound B
 – for each activity a_i, temporal start and end vars s_i, e_j
 – a set L of temporal linear equality and inequality constraints, e.g.:
 \[e_1 \leq s_2 + 20 \]

• A solution
 – satisfies the constraints in L and the resource bound B
Evolution Criteria for Parc ReTimers

Uncertainty

Constrainedness

3 years 2 years 1 year 6 months 0

Time to Schedule Execution

Evolution Criterion 3
Evolution Criterion 2
Evolution Criterion 1

Uncertainty

Constrainedness

3 years 2 years 1 year 6 months 0

Time to Schedule Execution

Evolution Criterion 3
Evolution Criterion 2
Evolution Criterion 1
Evolution Criterion for Parc ReTimer 1

• Flights already positioned for good Revenue

⇒ Minimal Perturbation is only component of evolution criterion

\[
\text{optimisation function } (\delta) = \sum |u - u_0|
\]

where \(u, v \) are temporal variables
Repeat: Variable Times

No. of Resources Required

S1 S2 S3
Algorithms for Flight Retiming

• **Structure**
 – Linear optimization function
 – Linear temporal constraints
 – Disjunctive scheduling constraints

• **Possible solution methods**
 – Traditional CSP
 • Strength disjunctive constraints
 • Weakness no global focus on optimization criteria
 – MIP
 • Strength focus on optimization function
 • Weakness not well suited to satisfaction of disjunctive constraints
Unimodular Probing (the discrete LP case)
- Discrete problems / disjunctive constraints / linear optimization fn.
- inc. a broad range of dynamic scheduling problems
- Most suited to minimal perturbation

Probe Backtracking (the general case)
- Decompose problem into tractable & intractable parts
- Generate tractable sub-problem probes
 - good assignments with high level of consistency
 - and/or optimization quality
- Use probe repair to dynamically focus search
Hybridization

\[
\sum_{ij} \text{Bool}_{ij} \leq B
\]

\[
\text{Bool}_{ij} \text{ iff } s_j \leq s_i \land s_i \leq e_j
\]

\[
u \leq v \pm c
\]

\[
\text{optimisation function } (\delta) = \sum |u - u_0|
\]

CSP hard set

AC-B lookahead resource bound checking

Heuristics

Repair

Decisions

Global cost propagation

Optimal suggested values

\[
\sum_{ij} \text{Bool}_{ij} \leq B
\]

\[
\text{Bool}_{ij} \text{ iff } s_j \leq s_i \land s_i \leq e_j
\]

\[
u \leq v \pm c
\]

\[
\text{optimisation function } (\delta) = \sum |u - u_0|
\]

LP easy set

chosen and inferred constraints
Timeout % - Unimodular Probing
• Aircraft Savings
 – up to 1000 activities, total of over 70 resources, 6 types
 – Saved Boeing 767 prior to installation

• Performance systematically better than other methods
 – Structured BT search
 – Repair-based BT Search
 – Structured BT search + LP at final stage
 – Repair-based BT Search + LP at final stage
 – MIP Search
Conclusions

• **Schedule Evolution**
 – Minimal perturbation scheduling is extremely useful for Airlines at Parc Retimer 1 time frame
 – Other time frames, Parc Retimers 2 and 3
 – Other application domains

• **Application-Driven vs. Technique-Driven Research**
 • Unimodular Probing
 • Probe Backtracking
 • The ECLiPSe Repair library
• Publications
 – “Minimal perturbation in dynamic scheduling”, [ECAI-98]
 • Hani El Sakkout, Tom Richards, Mark Wallace
 – “Improving backtrack search: Three case studies of localized
dynamic hybridization”, [PhD Thesis 99, Imperial College]
 • Hani El Sakkout
 – “Probe backtrack search for minimal perturbation in dynamic
 scheduling”, [Constraints Journal, to appear 00/01]
 • Hani El Sakkout, Mark Wallace

• Manuals
 – ECLiPSe User Manual
 – ECLiPSe Repair Library Manual